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PREFACE

This Memorandum has been prepared as a part of a continuing study
of hypersonic lifting-vehicle technology. It is an extension of pre-
vious investigations of the use of aerodynamic forces to provide
lateral-range capability for glide-reentry vehicles. The closed-
form solutions presented here should be of interest to designers and
planners concerned with the preliminary design and capabilities of

hypersonic glide vehicles.
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SUMMARY

Approximate closed-form solutions for various flight conditions
have been obtained to determine both the longitudinal and lateral range
cf hypersounic glide vehicles with constant bank angle. Results for
equilibrium-glide vehicles with a constant lift-to-drag (L/D) ratio
and gniall and slowly changing flight-path angle are presented in graph-
ical form. Other approximate closed-form solutions are also obtained
for glide reentry at very small flight-path angle, near-constant-speed
glide at high altitude, constant-deceleration glide at coastant alti-
tude, and constant-deceleration glide at fixed flight-path angle.

The assump!‘on of a very small flight-path angie (y = 0) results
in & smaller range prediction than does the assumption of a small and
slowly changing flight-path angle (Y~ 0.01 rad). This is especially
true for prediction of the lateral range of vehicles with high 1lift-
to-drag ratio. For a vehicle with an L/D of 3; entering at 0.98 or-
bital velocity and decelerating to 0.2 orbital velocity, the assump-
tion of a very small flight-path angle results in predictions that
underestimate lateral and longitudinal range by 22.6 and 22.5 percent,
respectively, in comparison with the predictions based on the assump-

tion of a small and slowly changing flight-path angle. In other words,
completely neglecting the flight-path angle in the equations of motion

ieads to a conservative range prediction.
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SYMBOLS

area
-{r
re

2
Ye-+ Ble

-1;(% cos §)
DL(cos &/0)

constant of integration
drag coefficient

1ift coefficient
2
drag force = CDpu Al2
p_uZ/(W/C.A)
o0 D

2
pouol(W/CLg)
acceleration due to gravity

altitude
entry altitude

initial altitude
lift force = CLpuzAIZ

earth's radius

2
uolg

dimensionless altitude, Eqs. (7)

he/ (RE + he) P he/RE
hi./(RE + he) = h:l/RE

distance along the flight path

time

flight speed at any given time

entry speed

initial speed
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orbital speed at reference altitude or entry
velocity ratio = u/uo, Eqs. (7)
reentry velocity ratio = ueluo
initial velocity ratio = uiluo

vehicle weight

downrange distance

siderange distance

tan ¢/{y(B - 2)]

2/[¥(L/D) cos &]

flight-path angle

©Bean value of small and slowly changing flight-path angle
flight-path angle at entry

initial flight;path angle

inverse scale height
URy + 1) ~ R (
lateral-range angle

atmospheric density
reference atmospheric density

dimensionless density ratio, Eqs. (7)
bank angle

turn angle

turn angle at entry

initial turn angle




1. INTRODUCTION

The problem of obtaining closed-form solutions for glide-reeatry
vehicles has been an area of interest for many years. Since the general
exact analytical solutions of the fundamental equations of motion for
glide reentry are difficult to obtain, various approximations have been
made by different authors for different flight conditions. Por instance,
the closed solutions for very small angles of inclinztion have been de-

rived by Gazley. (1,2)

Eggers et al. also obtained approximate closed-
(3 Chapman has devel-

oped analytical solutions for small angles of inclination and small

form solutions for sma211 angles of inclination.

1ift-to-drag (L/D) ratios.(a) The solutions for moderate angles of
inclination and medium L/D ratios were solved by Lees et al.(:’) Loh
has derived closed-form solutions for negative lift at small and large

(6)

gles of inclination, the approximate results of Arthur are availabie.a)

angles of inclination. For entry at small L/D ratios and large an-
Loh later obtained a second-order approximate solution for a noncscil-
latory type of entry trajectory and derived some exact analytical solu-
tions for certain trajectory variations.(s’g) Recently, Cohen has de-
veloped the closed-form solutions for a constant-deceleration flight
path.(lo) Loh extended his second-order solutions to am oscillatory
type of entry trajectory.(n) However, most of these results are for
two-dimensional trajectories where the bank angle is zero.

The closed-form solutions for : three-dimensional trajectory at a
constant and very small angle of inclination with constant bank-angle
a2 This Memorandum extends

Nyland's results to obtain exact closed-form solutions for equilibrium-

control have been obtained by Nylard.

glide path at small and slowly charging angles of inclination, as well
as for some special cases where the angles of inclination are larger.
A constant bank angle is assumed for both flight conditions. The re-
sults for an equilibrium-glide path at small and slowly changing angles
of inclination are also shown in graphical form to provide information

for preliminary-design purposes.
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The general equations of motion with constant bank angle in a

nenrotating three~dimensional inertial coordinate system, as shown in
Fig. 1, are

o

é-ﬁ-siny-

D
2 (1
L “2
-E?--ﬁCOSQ- 1-:2‘ cos Y (2)
(0]
u - L u2 cos YV cos W tan A
= WcosY==gin? - . (3)
g W u?.
(o)

where u is the speed at any given time, t is the time, Y is the flight-
path angle in the vertica. direction, D is the drag force, W is the
vehicle weight, L is the 1ift force, ¢ is the bank angle, v, is the
orbital speed at an entry altitude of 400,000 ft, w is the vehicle’
turn angle (heading angle), and A is the lateral-range angle. Equa-
tion (1) pertains to motion along the flight path, Eq. (2) to motien
up and down the local vertical, and Eq. (3) to a direction out of the
flight plane. It is assumed that the altitude region of interest is
below 400,000 ft and that gravity does not change very much between

sea level and 400,000 ft. It is further assumed that

2 2
. cos W
L jn6>>4_cos Ycoswtan)
D 2
u
o

and

sin Y=Y cos Y~ 1

2 - e - e g e ——————
> ~JPURRE N g AT L T e
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The first assumption indicates that the centrifugal-force component

X | in the lateral flight plane is small in comparison with the 1lift compo-

g nent in the lateral flight plane. This assumption, which is used through-
out this study, is also used by Nyland.(lz) However, for constant-alti-
tude glide at superorbital speeds, this assumption may cause an error of
30 percent for L/D = 2 in heading-angle change, as pointed out by Wang.(13)
The second assumption has been relaxed for one special case, given later.

With these assumptions, Eqs. (1) to (3) can be written as

1. D
- u=Y - W (&)
2
u L & - _
s Y=g cos ¢ 1 2 (5)
u
o
Yo =Zgint (6)
g v
Let
2
pu
ds S -2
u == dh = -YdS P WA
(7N
u - h
Va— r = o
u, RE<+ he

where S is the distance along the flight path, h is the altitude, he

is the entry altitude, and RE is the earth's radius. These variables
- 10

were introduced by Cohen, but p has beenumodified.( ) Equations (&)

to (6) can then be rewritten as

dvz 1 -.2
- ¥ C&pfY = -2 (8)

;eI ———

\s'e,‘ké::‘ ¥ T L e = TR Y NN
A 3 Tl Lottt rm




2 F} \
-Q:L- o - l——
= G, p cos & 2(y2 1) (9)
c.p
dw - - L
e 2y gsin % {(10)

where CD and CL are drag and 1ift coefficients, respectively. Equa-
tions (8) to (10) are first-order ordinary differential equations, and

their general solutions are

C,.p C.p c
D .- f D" = = F D =
2 JE, y dr ] Y dr T, -j Y dr i
v = e + 2e [ e o (11)
r
Y= [ (cpeos-2 £+
= | LP o8 & - S5+ 2) dr +-Ye (12)
: 7
& C.P .
w = -J; 2 sin & dr + @, (13)
e
where
Te © he/(RE + he)
Vé = ue/uo
Re = entry altitude
u = entry speed at he
Ye = entry flight-path angle at he
w, = entry turn angle at he

Equations (11) and (12) have to be solved simultaneously and numerically.
However, for scme special reentry cases, as presented below, the solu-

tions can be written in more simple forms.
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GLIDE REENTRY TRAJECTORIES AT SMALL AND SLOWLY CHANGING

FLIGHT-PATH ANGLE

One kind of atmospheric entry by lifting vehicles at small angles
of inclination is an equilibrium-gliide flight path, where the gravi-
tational force is balanced by the 1lift force ard by the centrifugal
force due to the curvature of the flight path. With the assumption
of a slowly changing flight-path angle, or ¥ m 0 and [-’yl < vy, which is
also assumed by Gazley,(l) Eggers et al.,(3) and Nyland,(lz) Eqs. (4)

to (6) reduce to

1. D
gu=-Y--W (14)
L 2
0= G cos 2 -1- Bf (15)
u
(v}
Yo=Lgine (16)
g W

Gazley(l) and Eggers et al.(3) solved Eqs (14) and (15) for the
two~-dimensional case, where % = 0, by assuming Y =~ 0; while Nyland(lz)
obtained solutions for the three-dimensional case, solving Eqs. (14)
and (15) by assuming Y =~ 0 and ¢ = constant. Although it is assi ed
here that & = constant, Y is considered in Eq. (14) as small but not
negligible. 1In terms of the new variables V and r, as introduced in

Eq. (7), Eqs. (14) to (16) can be rewritten as

c

S 2 yai

> v v+ 1S (14a)
C,p
-%— cos €=1 - V2 (15a)
C.p

de ,

—12-'-‘ sinéz-YVZ-Er? {16a)




Dividing Eq. {14a) by Eq. (15a) yields

wz

+BV B -2 (172)

where

I - 2

C
Y-C—Lcoa§
D

Y-cos§

and is a function of v, L/D, and 8. The solution of Eg. (17) is

vz J.BdtJ«JBdr . -Iﬁd;

(B - 2) dr + Ce (18)

where C is a constant of integration. The initial condition is u = u,
ath=h,or V=1V at T = ;e' Then Eq. (18) can be rewritten as

vzanf_ e g [par

+ e J. ¢ (B -2) ar (i9)

For constant L/D and %, and small and slowly changing Y, B is approxi-
mately a const~ut, or a mean vaiue is assumed for ¥, ari Eq. (19) can

be reduced to

B(E,-D) ‘
#-1-%-6--- ) et (20)

Equaticn (20) gives the relation between altitude and velocity for com-
stant values of B. Since B is a function of flight-path angle, L/D ra-
tio, and bank angle, any changes in one of these quantities will affect
the vehicle flight-speed and altitude relationship. Dividing Eq. (16)
by Eq. (15) and taking B and w} at mean values, respectively, ore can
obtain the turn angle:
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,
G,

JITOOR Tl
tu

b

2
w = tan [2£n3V2-ﬁ+2+zn_€—.] (21)
) Y(B - 2) SV§-B+2 v2
_ or
B(r_-1)
o= —t20 2 2(r -E)-znl--g--(l-%-vi)e - (22)
YB-2| e v

In the flight regime of interest, Y is small and slowly changing.
Therefore it is assumed that a mean value, ‘\.7, can be obtained. The

initial turn angle is taken as zero in Eqs. (21) and (22).

Dividing
Eq. (14) by Eq. (15). one obtains
> 2
L P S u =Y - 1 (23)
g u L cos ¥ L cos %
oD D

Solving Eq. (23) for t as a function of V by assuming constant L/D
and ¥ and mean value Y,

u %’- cos 3 s [vﬁ-y‘s - ][Ve\/é.*l'\/a - 2]
t= in = (24)
2g VB -2 [w@+ﬁ-2ﬂgﬁ¥Jﬁ-u

Roting that

au?
ds

u=

N

where S is the distance along the flight path, Eq. (23) can be re-
written as

duz
ds

()

2 1
- ZL u -Y—
uo-icos§ 3co:§

i
2

(23a)
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Solving Eq. (23a) for S as a function of V and r, respectively, one
obtains

R
s,_g_zn_v.z_u_._ﬂ £25)
8 v8+2-8
e
and
R
S = — (1"D - 1) (26)
Y -

where R_ = ui/g. The downrange distance can be obtained from
dx = dS cos @ 2n

where x is the distance traveled in the original direction of motion
and can be taken a2s approximately the distance on earth because of the
small flight-path angle and small ratio of altitude to earth radius.

For constant % and L/D and mean value ;, Eq. (27) can be integrated as

e )
B(x -t
- <%
N T ) (e |
x=—— " cosd2|2(r - 1) - in > >dr
Y J- e v
T e
e
" o
(28)
In terms o= V
2
- 2 _ v
5 €OS a%inm 8+2+ ‘-n~—‘23—
Ro v svi-a+2 A 2
x=:_'.—f 5 av (29)
Y v 4 VB+2-§
v
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Similarly the siderange distance can be obtained for comnstant ¢ and

L/D and wean value Y from

dy = dS sin w (30)

where y is the distance traveled perpemndicular to the original direc-

tion of motion, or

1
o T
+
L~
[
]
win
)
Y
L
L
'
® ™w
A
o]
(]
"
N
V
~v
[}

sinYa 2(§e -1) - £n

<
"
-<a| w
Q
"

In terms of V

R ¥ 2
y=:{—jv2 A— av? (32)

where o = tan 3/(B - 2)¥

GLIDE REENTRY TRAJECTOXIES AT VERY SMALL FLIGHT-PATH ANGLE

For equilibrium glide at very small flight-path angle, such as
for high-L/D flight, Y=~ Y =~ 0. Equations (4) to (6) can be reduced
to

-3 (33)

(3%)




U . L -
g w=g sin & (335)
From the definition of 38
2 L =
3-=Y-l-)-cos~r=0 (36)
>3

Substituting Eq. (36) into Egs. (21), (24), (25), (29), and (32),

respectively, one obtains

L Vi
w=5-sin $ inv— (37)
L
u T~ cos % (V-1 +1)
t = oD in 2 (38)
2g (Vv+ 1)(Vi - 1)

1 L
S==R =cos & in (39)
2 oD 14V
1
vV
gcos[%%sin§in;;- de
x=%k°%cos§ vz (40)
v -1
v
v?.
vzsin[-;-%sinézn;zi-]dvz
y=2R Lcos s | %1

2 oD v2 -1

where Vi = “iluo’ and v, = initial speed.
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Equations (33) and (34) and their results, Eqs. {37) to (41), are the
same as obtained by Nyland.(lz)

NEAR-CONSTANT-SPEED GLIDE AT HIGH ALTITUDE

For some applications of atmospheric flight, it may be desirable

to have the lifting vehicle enter at near-orbital speed and fly at

maximem L/D ratio or maximm C, and at constant bank angle antil it

reaches denser atmosphere at an altitude of about 250,000 ft. 1In this
phase of fiight at high altitude, atmospheric drag is assumed to be

neariy equal and opposite to the component of gravity along the flight
path. Thus, there would be little change in vehicle speed and, in the
present notation, this implies that 1/v2 - 1 x~ 0. Let the atmospheric

density be expressed by the well-known exponential approximation or
p=pe (42)

where po is the reference atmospheric density and { is the inverse
scale height. Substituting Eq. (42) into Ea. (7),

5 u2 0 2 __
.00 -th_ oo -ir -
P WA © WA © (43)

where C = CRy + b)) =~ (R

Then for flight at small angles of inclination, Eqs. (4) to (6)
can be reduced to

u D

Se Y- (44)
L I L -
-gv-ucosi {455
. L .
sm-ws;n§ {(46)
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Or in terms of V and r. Eqs. (44) to (46) become

z
de Polo -Cr
& YA © v -2 (4ha)
2
2 pu -—
ay oo _~(r 2
= e cos % (45a)
a WA
2
p u - -
de 1 oo -Cir .
-—df 2y W /CLA e sin 3 (463a)
Let
u2
D = Polo
b W/CA
uZ
D = Poo
L HICLA

Then Eqs. (44a) to (46a) can be rewritten as

'dvz -7

rin 3'%7Dne o2 {44b)
& _ o

& - DLe =" cos # (45b)
dw 1 o -0 _.

== "N D e sin 3 (46b)

For constant R’ICLA, Eq- (45a) can be readily integrated to yield

L



¥
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i
3 2 2 cos & l- Cre -gr‘! -Cr
i Y =Y <+ D s e = A, - B.e © (47)
e L I S
i where
Yo = flight-path angle at entry
) Ee = dimensionless altitude at entry
-Cr
2 e
Al = Ye + Ble
Ifs1 = DL(cos $/0)
Hence
/ 5\
..gr\
Y= KAl - Ble
1 1
Y B, _oo\%
: \/A; 1 - L -0
1
: B o
=\7i- -2ty
1 1
But
B - -
K—l- et «< 1
1
.
) -Cr
L1 1 ( 2 e) 1
S = ae = + B.e ~ o (48)
Y ‘;Ai e i Yi‘=
Substituting Eq. (48) into Eqs. (44a) and (46a), respectively,
o’ 1 -Cr 2
_— - D.e ° = 2 (49)
dr ‘\/ujil D




nLe° Ysind =0 (50)

3 k]
U L

- +
r 2 A1

gy

d

Integrating Eqs. (49) and (50) for constant w/CDA,

D Lo . Dy T
.J31 ¢ e A, 4
+ 2e | e ot (51)
T
D 3= -Cr
w:—m-_?_zsiné[egr-e e:]+we (52)

where Ve and w, are initial values of reentry velocity ratio and re-

entry turn angle, respectively.

CONSTANT-DECELERATION GLIDE AT CONSTANT ALTIT'DE

After rapid and close to constant velocity descent from orbit to
an altitude of about 250,000 ft, many entries of interest may require
the vehiclie to fly at constant altitude to perform plane-change ma-
neuvers. In order to maintain vehicle glide at constant altitude, the
gravity has to be balanced by 1lift force. As the vehicle decelerates,
the lift coefficient has to increase toc overcome the reduction in dy-
namic pressure until the 1ift force is too small to sustain constant-
altitude flight. In this phase cof flight h is essentially constant
and y = y = 0. The governing equat.cas of motion are ideatical to
that for equilibrium glide at very small flight-path angle except that

L and D are variables, namely,

09 2.
]
'
nijw

(53)
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w\—v:»’:'—&-—z \oa)
u
(o]
a . _ L
g 2= sin § (55)

However, in order to prevent skip, the vehicle is required to fly at

variable L/D at almost constant altitude. In addition, the vehicle

may fly at certain fixed bank angles to achieve desired plane changes.

For manned maneuverable vehicles, it may be desirable to perform this
aerodynamic maneuvering in a constant-deceleration mode of flight.
Then u and D become constants. Therefore, it is assumed that the L/D

ratio follows the relationship suggested by Cohen,(lc) namely,

c 2
Loa[1-% )k (56)
D 2 2‘/ D
u
o
Substituting Eq. (56) into Eq. (54%),
W
D= A, cos @ (57
2
or
Cp =3 -2 (58)
v Azp cos ¥

where A, = -1/a/g cos ¢ is constant and deceleration (-u) can be spe-

cified in g2's. Equation (56} can alsc be rewritten as

24
c o 1 - v (59

L pcos @2\ ¢?

Then Eq. (53) can be rewritten as
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= constant

= ]ﬁ-

o

Therefore flight is at a constant rate of deceleration, and
(60)

+ -t
u

V.
i
o

<
L]

Solving Eq. (55), one obtains
g tan & Yo £
w= o + —nV+-{(V. +V) (61)
i u, u 2 -1
(62)

Vi_wz_v:)

} o= - ‘g-
w=w -5 tan ¢ {4n vz
For a bank angle % - 90 deg, Eqs. (61) 2ud (62) approach infinity and

the results are not applicable, since equations of motiom are for
The vehicle range can also be obtained from Eq. (53):
(63)

% < 90 deg.
2

u
[
§ =37 (Vg - vz)

CONSTANT-DECELERATION GLIDE AT FIXED FLIGHT-PATH ANGLE
For manned reentry flight, it may be desirable to maintain con-

stant deceleration during the high-speed portion of flight after comn-

If the flight-path angle is fixed, then Eqs. (1)

(64)

stant-altitude glide.
te (3) can be rewritten as

= gin ¥y -~ % = constant

0q |-

Al S et onnr g -
i e
*

s

{
l"“t

B

T g
EORNN
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T
S 2 -

L u2
0=§cos§- - =3 Jeos ¥ (65)
u
(V)
u . .o L
ng cos ¥ = ¢ gin % (66)

Equations (64) to (66) can be rewritten in terms of new variables
Vand r as

a vV Ty (64a)
lsz2co8d o
0=3 chvz e 1-vV (65a)
C.p
dv "L sin?
ar ®T2Y cos Y (66a)

If the same L/D ratio expression suggested by Cohen(lﬁ)

is assumed,
namely,

C 2

L u L

c. ~4&11- 2)‘ D (56)
D uo

substituting Eq. (56) into Eq. (65) gives

D= %"—Z% (67)

or

cn < 2 fos Y (68)
V;Azp cos ¥




-19-

-cos Y
A2 = 0 — = constant
(E'- sin Y) cos &

Equation (66) can also be rewritten as

c. = ZAZ cos Y 1 - Vz _ -2 cos2 Y 1 - V2 (69)
L 5 cos & Vz T ofu . 2 ; ve
pg— 8in Y} cos™ ¢

Substituting Eq. (67) into Eq. (64) and integrating with respect to t,

a_,
v-vi-e-uo- (70)

Solving Eq. (64a) for V as a function of r gives

2 2 ..
pouo cDA -Ef - - pouo ”DA -Qf
—— dr «r. -~ e
2 sin Y J Y W 1 -J Y W oy
V2 = -——;7——~ e I_ e dr
r
2
r pouo cDA e-t; dr
[ e
+V§e 1 (71)
Dividing Eq. (64) by Eq. (66), one obtains
in &
w:w.+31n*§[£nﬁ+\'?-v2] (72)
i 2 u v2 i
L i

Equation (64) can be rewritten as

AT —. P e
e e, . =

g

iy

TN
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ko e

| ol oz / _cos y
s uz \Sin Y- Az cos & (64b)
%] o]
. or
2
s-s1+-2-§(v2-v§) a3
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III. DISCUSSION AND CONCLUSIONS

The general closed-form sclutions presented in Egs. (11) through
(13) can be solved numerically if the quantities w/CDA, WICLA, p, and
$, as functions of altitude, are known. For special cases, such as
equilibrium-glide trajectories with swall and slowly changing flight-
path angles, the closed-form solutions for constant L/D ratio and
bank angle are given in Eqs. (20) through (22), {24) through {26), (28),
(29), (31), and (32) in terms of the parameter B = 2/{v(L/D) cos %1.
One can directly obtain the value of 8 for various combinations of Y,
L/D, and cos % from Fig. 2. When Y and 2 are fixed, B decreases with
increasing L/D. (The range of B which is of interest varies with L/D
as shown in Fig. 9.)

All the results shown in Figs. 3 to 9 are for equilibrium glide,
where the Y term is retained in the equations of motion ard is taken
at mean value. For conditions where L/D, Y, and 2 are not constants,
one can divide the flight path into intervals and can apply all the
results by using mean values of L/D, Y, and ¢ in each interval. Total
flight time and total range can be obtained by summing up all the in-
tervals.

The flight-speed to entry-speed ratios, as functions cof altitude
ratios for different values of B as given by Eq. (20), are presented
in Fig. 3. Por a given B value, the speed ratio is fized for a given
altitude. The results also indicate that the flight speed decreases
with decreasing altitude. However, the rate of decrease is slower for
the higher values of B. For given valuer of L/D, V., and small and
slowly changing Y, the trajectory becomes steeper with increasing bank
angle. A high-L/D vehicle will, in general, fly a steeper equilibrium-
glide path.

Figure 4 shows the influence of entry speed, bank angle, and
flight-path angle on turn angle as expressed by Eq. (21). The re-
sult indicates that the turning rate increases as the vehicle slows
down. Large turn angles can be accomplished with high L/D and steep
bank angle. The effects of entry speed on turn sangle are insignifi-
cant at low values of flight speed and small values of Y{L/L} sia %.
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Fig.3—Reentry giide path for constant 8
(Eq. (20))
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Fig.5b—Turn angle and altitude relation
(Ve =0.98, v =0.01 rad, ®= 45 deg)
(Eq. (22))
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Fig.5d—Turn angle and altitude relation
(Ve =0.98, ¥ =0.03 rad, &= 45 deg)
(Eq. (22}))
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The altitude and turn-angle relation as obtained from Eq. (22)

Lo wan
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» the tuim angle increases
with increasing bank angle and the turning rate is highest at the end
of a turn for constant bank angle. A comparison of Figs. 5b and 5d
shows that for given flight conditions, the turn angle is larger for a
small flight-path angle. Figures 5b and S5e show that for fixed B, bank
angle, flight-path angle, and velocity ratio, the lower-entry-velocity
vehicle will achieve a given turn angle at higher altitude. As men-
tioned previously, neglecting the lateral centrifugal term in the equa-
tions of motion may result In a higher turn-angle prediction. This
error cén be 30 percent, as pointed out by Wang(13) for the severe con-

ditions he employed.

Equation (24) can be rewritten a=

[VJB_ - JB - 2][ve,/B—+,/B - 2]

t
‘"’EYJB(B -2) = 4n (24a)
Yo (W8 + B - 2]vyB - B - 2]
But {B(8 - 2) ~ B for larga values of B, hence
L oanBe - 2 ~ R (24b)
o u 3 cos ¢

The flight times for various flight conditions as given by Eq. (24)
are plotted in Fig. 6. Substituting Eq. (24b) into Eq. (24a) shows
that t is proportional to L/D cos &. 1In other words, the time de-
creases to zero as the bank angle approaches 90 deg or L/D approaches
zero. It is evident that high-entry-speed and high-L/D vehicles
require a longer time to slow down to the same speed vatio. For a
bank angle equal to 90 deg, the equations are not applicable, since
the flight path would resemble a ballistic trajectory rather tLhan a
lifting trajectory.

The flight-path length, S, for two different flight-path angles,
Y = 0.01 and 0.02, is shown in Figs. 7a and 7b, which irndicate that

more than half of the distance to be flown will be in the vegion

N A‘_ﬂcr-—.—‘??‘w_.—‘-.‘;;v a=E o T a—
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where the flight speed is greater than 90 percent of the entry speed.
In general, the flight-path length increases with increasing L/D at
a given speed ratio.

As expectaed, if mean value ? is used, the flight-path length is
a linear function of altitude, as given by Eq. (26) and shown in Fig.
8. It can be seen that the flight-path length would be doubled when-~
ever the flight-path angle is reduced by approximately half.

The longitudinal and lateral ranges for constant-bank-angle flight
are given by Eqs. (28) or (29) ond (31) or (32), respectively. The
numerical results for L/D = 1, 2, 3, and 4, and Ve = 0.98 and 0.90,
are presented in Figs. 9a through 9e. 1t is clear that large ranges
can be achieved by increasing L/D. The maximum lateral range can be
obtained with a bank angle of about 43 deg at L/D = 1 and v, = 0.98.
However, this bank angle for maximum lateral range shifts tc about 33
deg at L/D = 3 at low speed. The vehicle with high L/D (> 3) will pro-
ceed along its spiralling course far enough to achieve large heading
changes and will be capable of reversing its direction of flight as
it reaches very low speed. At a given spead ratio, both longitudinal
and lateral ranges are very sensitive to the initial entry speed. A
comparison of Figs. 9c and 9e shows that for y = 0.01 and L/D = 3, a
reduction of entry speed from 0.98 u, to 0.90 u  may reduce the longi-
tudinal range by more than half and may cut the lateral, range by more
than one-third by the time the speed ratio of 0.1 is reached.

A comparison of equilibrium-glide results obtained in Ref. 12
(based on the assumpticns of a very small flighi-path angle) and those
of the present analysis (based on the small and slowly changing flight-
path angle of Y = 0.01 rad) is ziven in Table 1 and Fig. 10. These
show that the assumption of a very small flight-path angle results in
a smaller range prediction particularly for :che lateral range of high-
L/D vehicles, and in prediction of a larger bank-angle requirement for
maximum lateral range.

One of the results of this study is a closed-form solution for
predicting the performance of equilibrium-glide vehi~les more accu-
rately than was possible in the past without machine programming of
the equations of motion directly. It cen be concluded that for
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EFFECT OF L/D AND FLIGHT-PATH ANGLE ON

LONGITUDINAL AND LATERAL RANGES3
(V,=0.98, V=0.2v)

y x at % $ at 8
. . 0. 01
Y vmax —259—21 ymax -{;élizl ymax :;O
L/D | (rad) | (n mi) Yy~0 (n mi) Y~0 | (deg) | “y~0
1 | o.01 580 1.068 4,197 1.119 42 0.933
A0 543 3,750 45
2 | o.01 2,236 9,080 38 o
~0 12910 1.171 2650 1.187 P 0.927
3 | 0.01 4,780 14,450 33 9
~0 3700 1.292 11,200 1.290 37 0.892
4 | o0.01 8,940 28,550 ] 27
~0 7000 1.277 15.700 1.818 31 0.871

%Based on assumpticns of a very small flight-path angle (Y =~ 0) and a
small and slowly changing flight-path angle (Y = 0.01 rad). Data for
¥ =~ 0 were obtained from Ref. 12.

orbital-speed reentry, a vehicle with L/D = 3, gliding at a flight-
path angle of 0.01 rad and a constant bank angle of about 33 deg, can
provide a reasonable lateral range gizater than the earth's radius.
In addition, more thanr half the longitudinal range will be achieved
before the flight speed reaches 90 percent of the reentry velocity.
However, half the lateral range will be achieved when the vehicle
velocity is approximately 60 percent of the reentry velocity for L/D
= 1, and 70 percent for L/D = 3, at optimum bank angle.
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